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In pursuit of a homogeneous model system for the heterogeneous
Phillips catalyst for olefin polymerizatiohwe have turned to
chromium coordinated by “nacnac” ligands ((Avcnac= 2,4-
pentaneN,N'-bis(aryl)ketiminato}. The bidentate coordination with
hard N-donors approximates the proposed binding of chromium to
the silica surface via two oxygen linkages, while the N-substituents & ' cla)
allow for steric protection of the active siteWhile our initial g
experiments using the (PimpcnacCr(lll) fragment demonstrated
catalytic activity?2 subsequent attempts to isolate a well-defined
single-site catalyst were thwarted by disproportionation and ortho-
metalation reaction® Herein we describe the structural charac-
terization and reactivity of a cationic chromium alkyl catalyst that
is active in the absence of any cocatalyst.

Addition of (2,6-MePh)ynacnaclLi to a slurry of CrG(THF);
in THF yielded the dichloride (2,6-M@h)nacnacCrG(THF), (1).

Reaction of1 with lithium alkyls in ether produced the neu- Figure 1. Molecular structure 06 (the BARF anion has been omitted for
tral dialkys (2,6-MePhpnacnacCr(THF)Mg (2), (2,6-MePh)- clarity). Selected bond distances [A] and anghs €r(1)—C(22), 1.930(3);

nacnacCr(CkBiMes); (3, see Scheme 1), and (2,6-bpnacnacCr-  cr(1)-0(1), 2.056(2); Cr(1yN(1), 1.934(3); Cr(1}N(2), 1.930(3);
(Bn), (4), all of which have been structurally characteriZz2ddopts N(1)—Cr(1)—N(2), 89.77(11); O(LyCr(1)—-C(22), 95.55(13).

c(5) c
o va

Sch: 1. Synthesis of (2,6-MezPh)znacnacCr(lll) Alkyls .
cheme Y ( 2Ph)e (1D Alky a square pyramidal geometry, whBeand4 are rare examples of

_|+ pseudotetrahedral Cr(lll) complexes.
Despite their coordinative and electronic unsaturation-four-

N Me HNR. N THF coordinate3 has an 11-electron configuration-none of the neutral
C . ° ( Cr@Me dialkyls reacted with ethylene. This is in notable contrast to Cp*Cr-
THF N THF (CH;SiMes),, an analogue 08 that polymerizes ethylene at low
‘@ 2 5 temperatures and pressufesven formation of a cationic nacnac
chromium alkyl does not guarantee catalytic activity. Thus, square
pyramidal [(2,6-MgPhynacnacCr(THRMe]BPh, (5), which was
TMeLi prepared by protonolysis @with 1 equiv of HNE§BPh, did not
+ exhibit any polymerization activity. Once again, we note the contrast
_Q j to related [Cp*Cr(THR)Me]BPhy, a functional homogeneous model
N

95

for the Union Carbide catalyst.

N CoHy However, treatment o8 with H(OEL),"BARF~ (BARF~ =

( CrCI2(THF C Cr\ = B(3,5-(CR)2CeH3)s7) in dichloromethane resulted in loss of 1 equiv

N N SiMes of SiMe; and concomitant formation of the brown ether adduct
[(2,6-MePh)nacnacCr(OE)CH,SiMe;]BARF (6), which could be
recrystallized from CHCly/pentane. The molecular structure ®f

has been determined by X-ray diffraction, and the result is depicted
>Q —|+ the N(1)>-Cr(1)-O(1) angle of 136 representing the largest
Cr '\ SiMeg H(OEL,)," (NC O~ coordination number 08. The 'H NMR spectrum of6 exhibited
moment Ofuer (295 K) = 4.1(1)uz is consistent with three unpaired

Me3zSiCHoLi in Figure 18
- Et,0 \| Et,O . L . .
6 adopted distorted tetrahedral coordination of chromium, with
’Q deviation from the ideal tetrahedral angle. The meligland bond
N distances are rather short, befitting the cationic nature and low
N SlMe3 N r\ isotropically shifted and broadened resonances, as expected for a
d SiMej paramagnetic chromium(lll) species, and the effective magnetic
6
electrons of a Cr(lll) (&) ion in the inevitable high-spin configu-
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Me,Ph)ynacnac Cr(THF)CEBiMe;]BARF. Furthermore, addition

of small amounts of BO to catalyst solutions significantly
decreases their activity. Finally, dilution of the catalyst increased
its specific activity; i.e., the effect expected due to a concentration-
dependent shift of a dissociation equilibrium.

Three-coordinate cationic Cr(lll) alkyls supported by bidentate
nitrogen ligands catalyze the polymerization of ethylene and the
copolymerization of ethylene witi-olefins. Therefore, we suggest
that a species akin tA represents a reasonable candidate for the
active surface species of the heterogeneous Phillips catalyst. Further
studies concerning the effect of charge, formal oxidation state, and
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Figure 2. Plot of M, of various polyethylene samples vs ethylene

conversion (0.036 mmoB, pethylene = 10—40 psig). Numbers denote
Mw/M, for each sample.

Supporting Information Available:
ization details forl—6 (PDF); X-ray structural data fog (CIF). This
material is available free of charge via the Internet at http:/pubs.acs.org.

ligand structure on the reactivity of chromium alkyls with olefins
will be the subject of future publications.
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Experimental and character-

ration.6 did not lose the coordinated ether upon prolonged exposure
to high vacuum.

Exposure of CHCI, solutions of 6 at room temperature to
ethylene (16-40 psig, 5-25 min) resulted in an immediate color
change from brown to green, and seconds thereafter solid poly-
ethylene precipitated. Polymer yields indicated a “moderate”
average activity of 22(8) g PE/mmabtatm; decreasing slightly
with reaction time13C NMR revealed only trace levels of methyl
branches €0.2 Me/1000 C). The low polydispersities of the
polymers thus obtainedv(,/M, = 1.2) and the dependence of the
polymer molecular weight\,) on conversion (see Figure 2) suggest
that the process has at least some of the features characteristic of
a living polymerizatior? There are few homogeneous catalysts for
the polymerization of ethylene thought to be livihgp our
knowledge none involve chromiuffiPolymer produced at higher
ethylene pressure (300 psig) exhibited a somewhat broader mo-
lecular weight distributionNl,,/M,, = 1.73); however, this may be
attributable to the effects of the pronounced exotherm observed in
this experiment (20C to 75°C within the first minute).

Our model system reproduces the Phillips catalyst’s ability to
produce “linear low-density polyethylene” (LLDPE) by copolym-
erization of ethylene with-olefins. Thus,6 catalyzed the copo-
lymerization of ethylene with 1-hexede:*C NMR analysis of a
polymer produced in the presence of 1-hexene (20 g of 1-hexene
in 30 mL of CH,Cl,, 200 psig GH4) showed the presence of 103
butyl side chains per 1000 backbone carbons. Remarkably, its
polydispersity #1,/M, = 1.78) is similar to that of the homopoly-
mer, and the molecular weighitif = 108 000) is even larger.

We suggest that the active species in these polymerizations is
the three-coordinate nine-electron species [(2,6P@nacnac-
CrCH;SiMeg] ™ (A in Scheme 1) rather than the four-coordinate
ether adducé. Several lines of evidence support this notion. First,
addition of 1 equiv of THF tdb yields catalytically inactive [(2,6-
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